La visión de Toyota de una sociedad futura sostenible basada en el hidrógeno reconoce el valor de este vector energético como recurso viable y abundante para transportar y almacenar energía. Tiene el potencial de posibilitar una movilidad sin emisiones de dióxido de carbono, no solo en el transporte rodado, sino también en trenes, barcos y aviones, y de generar energía para la industria, las empresas y los hogares. Es además un medio muy eficiente para almacenar energía renovable y se puede transportar allá donde haga falta, así nació el Toyota Mirai.
Toyota empezó a trabajar en el desarrollo de un vehículo eléctrico de pila de combustible en 1992. Y lanzó a nivel global su berlina eléctrica de pila de combustible, el Toyota Mirai, en 2014. Ese logro sin precedentes fue posible gracias a la experiencia líder en el mundo de Toyota en tecnología híbrida eléctrica, que es la base para un amplio abanico de sistemas de propulsión de vehículos electrificados.
El concepto básico de la energía híbrida de Toyota se ha ido adaptando a la producción de vehículos híbridos eléctricos —Hybrid Electric Vehicles (HEV)—, híbridos enchufables —Plug-in Hybrid Electric (PHEV)—, eléctricos de batería —Battery Electric Vehicles (BEV)— y, a partir del Mirai, eléctricos de pila de combustible —Fuel Cell Electric Vehicles (FCEV)—. Cada uno de ellos presenta cualidades que se ajustan a distintos requisitos de movilidad: por ejemplo, los BEV son ideales para recorridos más cortos y principalmente urbanos; los HEV y PHEV están más indicados para todo tipo de trayectos, incluidos viajes de distancias más largas, y los FCEV pueden ser turismos más grandes y pesados, vehículos industriales, de mayor tonelaje, y diferentes soluciones de transporte público.
Ahora ve la luz una nueva generación del Mirai, un vehículo que eleva la tecnología FCEV a nuevas cotas y apela más directamente a las emociones, tanto por su estilo dinámico y contemporáneo como por ofrecer una experiencia más gratificante al volante. Gracias a un sistema de pila de combustible ampliamente rediseñado, a una configuración muy inteligente y a una mayor eficiencia aerodinámica, su autonomía se acerca a los 650 km, sin más emisiones que agua.
Nuevo grupo de pila de combustible
El nuevo grupo de pila de combustible y el nuevo convertidor eléctrico de la pila de combustible —Fuel Cell Power Converter (FCPC)— de Toyota han sido desarrollados expresamente para su uso con la plataforma GA-L. Los diseñadores han conseguido reunir todos los elementos en el bastidor, incluidas las bombas hidráulicas, el intercambiador de calor, el sistema de climatización, los compresores de aire y la bomba de recirculación de hidrógeno. Todos los componentes son ahora más pequeños y ligeros, y al mismo tiempo su rendimiento ha mejorado. La propia carcasa del grupo de pila de combustible es también más pequeña gracias al uso de soldadura por fricción batida —Friction Stir Welding (FSW)—, que reduce el espacio entre la pila de combustible y su envoltura.
La pila de combustible emplea un polímero sólido, como en el Mirai actual, pero ahora es más pequeño y tiene menos celdas: 330 en lugar de 370. Sin embargo, alcanza un nuevo récord de densidad energética específica, con 5,4 kW/l, superando los 3,5 kW/l de la primera generación de Mirai. Así, la potencia máxima se ha incrementado desde los 114 kW a los 128 kW. Asimismo, ha mejorado el rendimiento a baja temperatura, y ahora se puede arrancar a temperaturas de hasta -30˚C. Al concentrar las conexiones del sistema dentro de la carcasa, se necesitan menos componentes, lo que también permite ahorrar espacio y peso.
La prioridad otorgada a la innovación y la mejora en todos los componentes ha hecho posible una reducción del 50 % del peso y, sin embargo, se ha logrado un 12 % más de potencia. Entre las nuevas medidas destaca la reubicación del colector, la reducción del tamaño y el peso de las celdas, la optimización de la forma del separador del canal de gas y el uso de materiales innovadores en los electrodos.
La unidad incorpora asimismo el convertidor CC-CC de la pila de combustible —Fuel Cell DC-DC Converter (FDC)— y componentes modulares de alto voltaje, que también pesan un 21 % menos que en el sistema actual. Así, el peso se ha reducido 2,9 kg, hasta los 25,5 kg. La tecnología avanzada también ha ayudado a ahorrar espacio, y de hecho es la primera vez que Toyota utiliza un material semiconductor de carburo de silicio de nueva generación en el módulo de alimentación inteligente —Intelligent Power Model (IPM)—. El resultado es una mayor potencia y un menor consumo de combustible.
En otros componentes del grupo de pila de combustible se ha aplicado el mismo planteamiento de reducción de tamaño y peso. La entrada de aire se ha diseñado para minimizar las pérdidas de presión, y contiene materiales de aislamiento acústico para que el ruido producido no llegue al habitáculo. El escape utiliza un conducto de resina y ha sido diseñado para permitir descargar una gran cantidad de aire y agua. Asimismo, la mayor capacidad del silenciador contribuye a reducir el ruido en el habitáculo. Globalmente, todo el sistema de aire es casi un 30 % más pequeño que en el Mirai actual, y pesa un 34,4 % menos.
Un aire más limpio al conducir
El impacto beneficioso sobre el medio ambiente de conducir el Toyota Mirai va más allá de la ausencia de emisiones, y genera de hecho unas ‘emisiones negativas’: en la práctica, el vehículo limpia el aire al circular. La entrada de aire cuenta con un filtro de tipo catalizador, una innovación de Toyota. Al entrar el aire en el vehículo para alimentar la pila de combustible, la carga eléctrica del filtro de tela no tejida captura las partículas microscópicas contaminantes, como dióxido de azufre (SO2), óxido de nitrógeno (NOx) y partículas PM2,5.
El sistema consigue eliminar entre el 90 y el 100 % de las partículas de entre 0 y 2,5 micras de diámetro del aire que pasa por el sistema de pila de combustible.